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Abstract—A new machine learning SoC (MLSoC) for multi-
media content analysis is implemented with 16-mm� area in 90-nm
CMOS technology. Different from traditional VLSI architectures,
it focuses on the coacceleration of computer vision and machine
learning algorithms, and two stream processors with massively
parallel processing elements are integrated to achieve tera-scale
performance. In the dual stream processor (DSP) architecture, the
data are transferred between processors and the high-bandwidth
dual memory (HBDM) through the local media bus without con-
suming the AMBA AHB bandwidth. The image stream processor
(ISP) of the MLSoC can handle common window-based operations
for image processing, and the feature stream processor (FSP) can
deal with machine learning algorithms with different dimensions.
The power efficiency of the proposed MLSoC is 1.7 TOPS/W, and
the area efficiency is 81.3 GOPS/mm�.

Index Terms—Digital circuit, hardware architecture, machine
learning, multimedia content analysis, system-on-a-Chip (SoC).

I. INTRODUCTION

T HE significance of mining and recognition in the next era
of Tera [1] has received more and more attention in recent

years. As a subfield in artificial intelligence, machine learning
[2] provides a series of algorithms for mining and recognition,
such as supervised learning algorithms, unsupervised learning
algorithms, and reinforcement learning algorithms. These
algorithms are widely employed in different applications in
multimedia content analysis, including face detection [3], color
image segmentation [4], and content-based image retrieval
[5]. The repetitive operations for high-dimensional vector pro-
cessing result in laborious computations for machine learning
algorithms, so it is difficult to meet the real-time requirement
by using traditional processors. Many hardware architectures
and design methodologies for machine learning algorithms,
such as Gaussian mixture model-based classification [6] and
K-means clustering [7], [8], are proposed to accelerate the
computational speed, but the hardware integration of different
kinds of algorithms is still an open question. At the same time,
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the development of high-resolution CMOS image sensors [9]
has introduced the requirements for high-performance video
processing, which is crucial to satisfy the real-time require-
ment in mobile systems. Different kinds of large-kernel image
processing operations, such as the median filter, the sharpening
filter, the bilateral filter [10], and the Gaussian filter, are essen-
tial to video noise reduction and video quality enhancement.
Therefore, it is necessary to develop suitable architectures and
platforms for the coacceleration of machine learning and image
processing tasks.

Due to the rapid growth of consumer electronics and advances
of semiconductor technology, mobile devices, such as digital
cameras, portable computers, and cellular phones, are equipped
with various kinds of high-performance processors. To analyze
the content of image and video data, many kinds of VLSI ar-
chitectures are proposed. Abbo et al. propose a massively par-
allel processor for video scene analysis [11], Kim et al. propose
a processor with a visual attention engine to recognize objects
[12], and Cheng et al. propose an SoC which combines a pro-
cessor with a CMOS sensor [13]. Nevertheless, these processors
do not have suitable architectures to accelerate machine learning
algorithms for multimedia content analysis. Different from the
previously reported works [11]–[13], a high-performance ma-
chine learning SoC (MLSoC) for multimedia content analysis
is proposed. It focuses on the coacceleration of computer vi-
sion and machine learning algorithms, and the image stream
processor (ISP) and the feature stream processor (FSP) are in-
tegrated into the dual stream processor (DSP). Both processors,
the ISP and the FSP, are established on the 256-bit local media
bus (LMB), which is directly connected to the high-bandwidth
dual memory (HBDM). The HBDM offers the DSP the instant
access of video data and feature data, and the hardware architec-
ture can achieve a maximum throughput of 62.5 Gpixel/cycle for
image processing operations and 16 vector/cycle for machine
learning algorithms.

This paper is organized as follows. The proposed SoC archi-
tecture is first described in Section II. Then, the architectures
of the ISP and the FSP are introduced in Sections III and IV,
respectively. Next, the VLSI implementation of the proposed
work is shown in Section V. Finally, a short summary is given
in Section VI.

II. MLSOC ARCHITECTURE

Fig. 1 shows the system diagram of the MLSoC, which
contains a complete platform for multimedia content analysis.
There are two AMBA AHBs [14] of different bandwidth, and
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Fig. 1. Architecture of the proposed MLSoC.

Fig. 2. Architecture of the DSP.

the data in the two buses can be exchanged through the AHB
bus bridge. Each silicon intellectual property (SIP) on two
AHBs can access the external DDR memory through the multi-
channel memory controller. To fully utilize the bus bandwidth,
the RISC is connected to the 32-bit AHB, whereas the DSP
is connected to the 128-bit AHB. The system and application
tasks are executed on the RISC, and the DSP receives instruc-
tions from the RISC through the LMB-AHB interface, which is
connected to the DMA controller to efficiently access video or
feature data from the external DDR memory.

The architecture of the DSP is shown in Fig. 2. After receiving
the instructions, the control unit in the DSP analyzes the instruc-
tions to manipulate the operations with two stream processors.
In the DSP architecture, the data are accessed through the LMB,
which is connected to the 32-bank HBDM. The half size of the
HBDM is sufficient to store an image of 160 120 pixels, which
can be obtained from the video input interface by down-sam-
pling or slicing the image data. The purpose of the HBDM is to

store the image data for the ISP and the feature data for the FSP,
and the data in one memory of the HBDM can be fully copied
to the other in 2048 cycles, where one cycle is defined as the
inverse of the clock frequency of the system in this paper. The
rapid data access accelerates the computation for multimedia
content analysis and reduces the power consumption of data
transmission between the RISC and the DSP because most of
the operations are performed in the architecture of the DSP. Be-
sides, the maximum input bandwidth of a subprocessor inside
the DSP reaches 2048 bit/cycle.

III. IMAGE STREAM PROCESSOR

Large kernel operations for pixels are significant for image
processing tasks in multimedia content analysis. For example,
the Gabor transform [15] can be used for image texture ex-
traction, and the Gaussian filter can be applied to the detec-
tion of scale-space extrema for feature points [16]. The image
stream processor (ISP) employs massively parallel processing
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elements to process image or video data, and the input band-
width of image pixels is transformed from 16 pixel/cycle to
256 pixel/cycle inside the ISP by the input interface to accom-
plish window-based operations. In other words, a maximum of
16 16 pixels in a window can be processed in the same cycle
based on the ISP architecture. Since the window-based opera-
tions are processed in the raster-scan order, the “Pixel Stream
Memory,” which is connected to the input interface in the ISP,
can instantly offer the subprocessors the pixels of the current
window by receiving the 16 new pixels from the HBDM and
discarding 16 old pixels in the previous window. Therefore, the
ISP can help achieve tera-scale performance even if the band-
width of the LMB is only 256 bit. The ISP consists essentially
of an arbiter, two subprocessors, and a set of shared memory.
The arbiter controls the behavior of each processor according to
the ISP instructions, and the processor not in use is automati-
cally set to be inactive to save the power consumption. The set
of shared memory, which includes “Pixel Stream Memory” and
“Kernel Stream Memory,” is used to store the pixel data and
the kernel data for image processing tasks. Two subprocessors
are the linear processor and the order processor, both of which
are able to handle 256 pixel streams simultaneously, and the bit
length of each pixel stream is 8 bit. These two subprocessors
have the same output bandwidth, 1 pixel/cycle, and they deal
with parallel data-in, scalar data-out image processing tasks.

In order to fetch the input pixel stream from the HBDM, a new
memory architecture is developed for window-based operations
in image processing tasks. The memory utilization scheme is
illustrated in Fig. 3, where two examples are shown. The input
image, whose width is denoted by , is first partitioned into
different slices, each of which includes pixels. These
slices are stored to one of the HBDM and sequentially arranged.
When the ISP demands pixels in a 16 16-pixel window, the
HBDM sends 16 pixels simultaneously to the ISP in one cycle,
and the memory bandwidth of the HBDM can be fully utilized.
For example, in Fig. 3, the pixels in Window 1 occupy Slice
2 and Slice 3, and the pixels in Window 2 occupy Slice N. No
matter what the window position is, the pixels required by the
ISP never occupy the same bank in the HBDM. Based on the
memory architecture of the HBDM, the traditional line buffer
memory [17], which is used for window-based operations, can
be saved to reduce hardware costs.

A. Linear Processor

Fig. 4(a) shows the architecture of the linear processor, which
handles linear operations for image processing. There are four
levels of configuration network in this processor, and the amount
of data is reduced level by level. The processing elements in
the first level can deal with multiplications of a maximum of
256 parallel pixels and their corresponding coefficients from the
window in the image, and the results are sent to the next level
through the configuration network, which contains a set of con-
text registers to manipulate the stream of pixels in each level.
In the second level, the ALU trees handle subtraction and ad-
dition operations based on the results of multiplications in the
first level. The data are then collected in the next level through

Fig. 3. Memory utilization scheme of the HBDM for the ISP.

the configuration network. In the third level, dedicated acceler-
ators for face detection, pixel variance calculation, and corre-
lation coefficients, are integrated into this processor to enhance
the functionalities for video analysis. Based on the statistical
analysis, these dedicated functionalities are frequently used in
the image processing tasks for multimedia content analysis, and
the high-throughput divider is used to compute one division op-
eration per cycle. Then, the ALU in the fourth level performs
simple instructions, such as additions and subtractions for the
final output data. General image linear operations, including the
Laplacian filter, the low-pass filter, the Gaussian filter, the Gabor
transform, and the 16 16-pixel convolution, can be executed
in one cycle with 40 cycles of latency.

In this architecture, the pixels can be repetitively processed by
the processing elements in different levels of the configuration
network. Different from traditional processors, the equivalent
input bandwidth of the ISP is computed according to the total
bandwidth of the input bandwidth to each of the pipeline stages.
The bandwidth is distributed to the processing elements by the
configuration network in four levels as shown in Fig. 4(a), and
the performance of the linear processor can achieve 0.67 TOPS
(Input Bandwidth 0.31 TB/s 0.98 TB/s 0.04 TB/s
1.33 TB/s) while the clock frequency is 300 MHz. This perfor-
mance also results from the special design of the processor ar-
chitecture, where the processing elements are cascaded in each



2324 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 11, NOVEMBER 2010

Fig. 4. (a) Architecture of the linear processor in the ISP. (*The bandwidth that is consumed in the processing elements in each level is listed.) (b) Architecture
of the order processor in the ISP. (*The bandwidth that is consumed in the processing elements is listed.)

level. Note that in this paper, the 8-bit operations are considered
for the performance evaluation.

B. Order Processor

Fig. 4(b) shows the architecture of the order processor, which
deals with sorting operations for image processing. The sorting
procedure [18], [19] is implemented by a set of reconfigurable
hardware, which contains eight-stage processing elements for
bit-wise operations and a set of multiplexers to compute the
rank order of a set of parallel pixels. Each stage of processing
elements contains 256 parallel bit-logic modules, an adder tree
with nine layers, and a comparator to compare the results of
summation between stages. The set of multiplexers is 16-stage
pipelined to shorten the critical path for the real-time processing
requirement. Common nonlinear image operations, such as the
morphological filter, the 16 16-pixel median filter, the arbi-
trary kernel median filter, can all be executed in one cycle with
40 cycles of latency.

Similar to the linear processor, the configuration network of
the order processor is responsible for the bandwidth allocation
to eight “Bit-Level Processing Elements.” Based on the config-
uration network, a total of 0.61 TB/s bandwidth can be supplied
to each processing element at 300 MHz. The processing ele-
ments are also cascaded in each level to simultaneously process
the input pixel streams, so the equivalent input bandwidth to the
processing elements in the sub-processor is much higher than
the total bandwidth of input pixels streams and kernel streams
(Input Bandwidth 76.8 GB/s 76.8 GB/s 0.15 TB/s).

These two sub-processors, the linear processor and the order
processor, enable the ISP to handle most of common operations
used in the image processing tasks of computer vision algo-
rithms, such as pre-processing and filtering. The performance

TABLE I
PERFORMANCE OF SOME ISP SINGLE OPERATIONS

of some ISP single operations for the DSP is listed in Table I.
Although the proposed architecture is designed to handle the op-
erations with a maximum of 16 16 pixels in a window, it can
be used for other window sizes which are smaller than 16 16
pixels as well. As long as the AHB resources are available, the
performance of window-based operations from 3 3 pixels to
16 16 pixels listed in Table I can be higher than 100 fps for an
HDTV image (1920 1080 pixels) when the clock frequency is
300 MHz.

IV. FEATURE STREAM PROCESSOR (FSP)

The FSP, whose architecture is shown in Fig. 5, is intended
to handle feature vectors extracted for multimedia content anal-
ysis, and it contains two subprocessors for machine learning al-
gorithms: the supervised learning processor and the unsuper-
vised learning processor. Although these two processors sup-
port different algorithms, the common property is that they both
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Fig. 5. Architecture of the FSP.

Fig. 6. Architecture of the automatic sorting mechanism for K-nearest neighbor in the FSP.

need a large amount of data bandwidth, and the supported al-
gorithms are suitable for stream processing because of the reg-
ular data access pattern. Therefore, the two subprocessors are
directly connected to the LMB to deal with the feature data in
the HBDM.

Both of the sub-processors are able to compute either the
Manhattan distance or the Euclidean distance by using the
same hardware resources, and the distance measurement is
selected according to the instructions. The supervised learning
processor can handle the K-nearest neighbor algorithm, which
is frequently employed in information retrieval applications,
and it contains a set of parallel processing elements that is able
to handle feature vectors with a maximum of 128 dimensions.
It also employs the automatic sorting mechanism for distance
ranking, and the results can be immediately dumped out without
extra sorting stages. The architecture of the automatic sorting
mechanism is shown in Fig. 6, which contains a total of 128
parallel processing elements to compute the ranking of dis-

tances. In addition, to fully utilize the bandwidth of the LMB,
the unsupervised learning processor employs the bandwidth
adaptive mechanism [20], which allocates different hardware
resources for K-means clustering algorithm according to the
number of feature vector dimensions. A simplified version
of the architecture of the bandwidth adaptive mechanism is
illustrated in Fig. 7, where four-parallel 1-D vectors are si-
multaneously processed in the three layers of different sets of
processing elements in Mode 1, and two-parallel 2-D vectors
and one-parallel 4-D vectors can be processed in Mode 2 and
Mode 3, respectively. Much more complicated than Fig. 7,
the unsupervised learning processor focuses on the bandwidth
adaptive mechanism for 16-D vectors, and the HBDM enhances
the efficiency of the data access for the iteration process of
K-means clustering. The performance of some FSP single op-
erations for the DSP is listed in Table II, and the throughput of
vectors can be adjusted to the bandwidth to obtain the optimal
efficiency.
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Fig. 7. Architecture of the bandwidth adaptive mechanism for K-means in the FSP.

TABLE II
PERFORMANCE OF SOME FSP SINGLE OPERATIONS

TABLE III
MLSOC SPECIFICATIONS

While applying the bandwidth adaptive mechanism with
cluster number , a maximum of 16 cluster centroids
are processed in parallel. Therefore, the input vector streams
are repetitively sent to the “E-M Distance Calculator Set” [20]
(Input Bandwidth 0.38 TB/s) and the “M-S PE Set” [20]

Fig. 8. Chip micrograph.

(Input Bandwidth 0.33 TB/s) to process two 256-D vector
streams in parallel. Therefore, the performance of this processor
can achieve 0.35 TOPS (Input Bandwidth 0.38 TB/s 0.33
TB/s) when the clock frequency is 300 MHz.

V. VLSI IMPLEMENTATION

The proposed MLSoC is implemented on a 16-mm die
using TSMC 90-nm 1P9M process. The maximum operating
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Fig. 9. (a) Comparison of this work and the previously reported works [11]–[13] based on the power efficiency and the area efficiency. (b) Comparison of the ISP
in the MLSoC and the CRISP [17].

frequency of the proposed MLSoC is 300 MHz, and the total
on-chip memory is 79 KB. Table III shows the chip speci-
fications, and the chip micrograph is shown in Fig. 8. The
peak performance of the MLSoC achieves 1.3 TOPS (Input
Bandwidth 1.33 TB/s 0.61 TB/s 0.38 TB/s 0.33 TB/s),
and the input bandwidth inside these processors can achieve
more than 2.6 TB/s while one operation uses 2-Byte pixels
for image data or 2-Byte vectors for feature data. The power
efficiency and the area efficiency of this work are compared
with the previously reported works [11]–[13] in Fig. 9(a). The
proposed work achieves 1.7 TOPS/W in the power efficiency
and 81.3 GOPS/mm in the area efficiency, both of which are
the highest among the four works.

The ISP in the MLSoC is compared with the related work, the
coarse-grained reconfigurable image stream processor (CRISP)
[17], and the result is shown in Fig. 9(b), which shows that the

proposed ISP uses 4.21 times of logic gate count to handle more
than 11 times of input pixel bandwidth and to support 10.24
times of the maximum window size.

Fig. 10 shows the flowchart of an algorithm example using
the proposed MLSoC. The image stream (160 120 pixels) is
first loaded to the HBDM through the LMB-AHB interface. The
ISP executes the instructions for “median filter” and sends the
processed image stream to the HBDM. The FSP regards the data
stored in the HBDM as the feature stream and executes K-Means
clustering by using the bandwidth adaptive mechanism. When
input vectors are 1-D, 16 times the speed acceleration can be
achieved. The clustered feature vectors are stored to the HBDM
again and the process of image segmentation is completed. Then
the data can be transferred to the external memory by the DMA
controller. The total time to compute the algorithm example
in the DSP, where 32 iterations are performed in K-means, is
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Fig. 10. Algorithm example of the proposed MLSoC.

less than 0.5 ms. Other complicated examples, such as image
retrieval and object recognition, can also be accomplished in
the proposed MLSoC with the aid of the RISC and the external
DDR memory.

VI. CONCLUSION

A 1.7 TOPS/W 16-mm MLSoC is implemented in TSMC
90-nm CMOS technology. The new SoC architecture meets the
flexibility and performance requirements of multimedia con-
tent analysis for consumer electronics, and the tera-scale per-
formance of the DSP enables the coacceleration of computer vi-
sion and machine learning algorithms. Moreover, the proposed
MLSoC achieves higher power efficiency and area efficiency
than other related works.
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